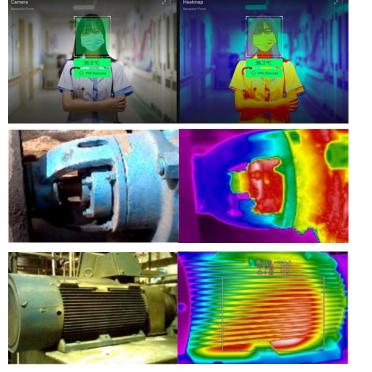
Thermoreflectance-Based Submicron Temperature Profiling and Structure Function Analysis for Multilayer Nanostructures

The 19th Korea-U.S. Forum on Nanotechnology

2025. 07. 04

Presenter: Guesuk Lee

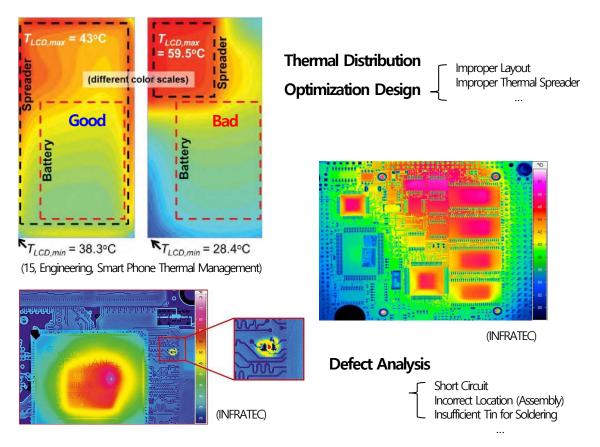

신뢰성연구센터

Reliability Research Center

IT Materials & Components R&D Division

Analysis Using Thermal Imaging Measurement Technology

Various Analysis Using Temp. Measures

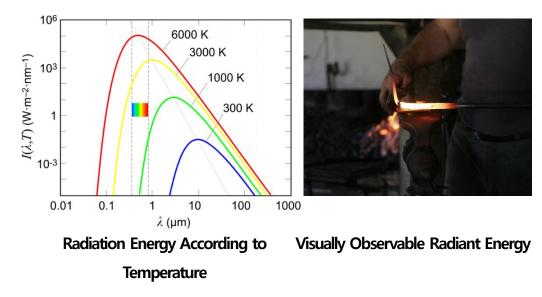


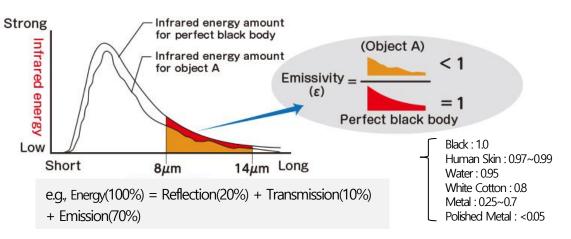
Covid-19 Fever Screening

Internal Bearing

Internal Motor

Analysis in the Electronics Field




Thermal imaging measurement featuring advantages such as 2D analysis (location), non-contact, and real-time monitoring

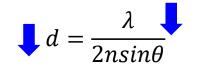
Thermal Analysis Using Infrared Measurement

Planck's Law(Germany, 1900) & Infrared (IR) Cam.

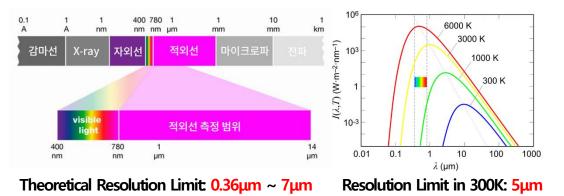
- \cdot All objects above absolute zero emit thermal radiation (energy).
- \cdot The intensity of thermal radiation is related to 1) Object Temperature, and 2) Emissivity (Surface Condition).
- Photodetector (light-to-electricity conversion, e.g., photodiode) + Image Sensor (image processing, e.g., CCD, CMOS)

Infrared Energy Emission Based on Emissivity

Same Temp. Diff. Emissivity Same Temp. Diff. Reflectivity Processing for Temp. Measurement

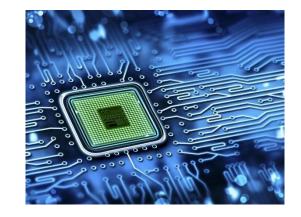

Infrared Measurement Results by Emissivity

IR cameras measure the amount of infrared radiation energy emitted from objects, not temperature itself


Thermal Image Measurement & Spatial Resolution

Spatial Resolution

- · Abbe (Netherlands 1873) revealed the limit of resolution.
- \cdot To improve resolution, the wavelength must be shortened.



d: Resolution $n\sin\theta$: Numerical Aperture (NA), max = 1 *n*: Refractive index λ : Wavelength of light

Thermal Reliability Issues in Integrated Circuits

- · Smaller Features (10nm~100 μ m) \rightarrow Contact is Not Possible.
- Increasing Power Density → Higher Heat / Localized Heat
- · Lifetime : $15^{\circ}C \uparrow \rightarrow \text{Lifetime } 1/4 \downarrow$
- High Speed Response

IR thermal imaging lacks sufficient resolution for dense circuit inspection in the submicron range.

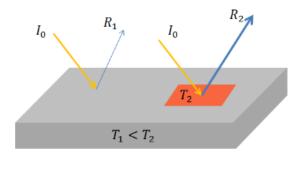
Thermo-Reflectance Measurement Equipment – Spatial/Temp. Resolution

Principle of Thermo-Reflectance Measurement (ref., MicrosanJ / Nanoscopesystems / ALTER Tech. / Electronics Cooling)

- The optical reflectance (R) of a sample changes depending on its temperature. (1968, Thermoreflectance in Semiconductors, Phys. Rev.)
- · By measuring the change in reflectance (ΔR), we can experimentally determine the temperature change (ΔT) \rightarrow requires the TR coefficient (C_{TR})
- · When CTR is large at a specific illumination wavelength, temperature resolution improves \rightarrow Proper illumination wavelength selection is required

F-

CTR (×104), I


1111111

400

500

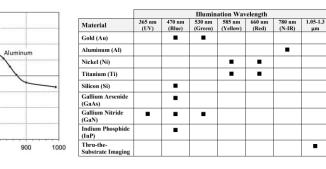
600

Wavelength, nn

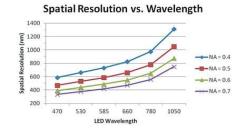
 $\frac{\Delta R}{R} = \left(\frac{1}{R}\frac{\partial R}{\partial T}\right)\Delta T = C_{\rm TR}\Delta T$

 $C_{\rm TR} = f$ Ambient Temperature,

Optics/Microscope NI)


 $C_{\rm TR}$: Thermoreflectance Coefficient (10⁻²/K ~ 10⁻⁵/K)

Illumination Wavelength [Visible LED Source],

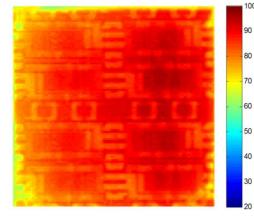

Material & Surface Prop. [Polishing, etc.],

Output signal CCD InGaAs

Measurement Process of Reflectance Coefficient @ Target Temperature Range

Optical System and Resolution

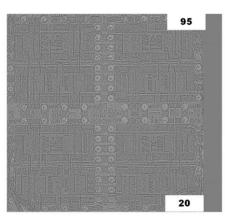
Material-specific Thermoreflectance Coefficient & Illumination Wavelengths


Comparison of Thermal 2D Images

TR(Visible Light) vs. Thermal Emission(IR) vs. Optical

	10	0.0	5.58L	
9	101	00		
		DO		
	HT-CO	00	E CONTRACTOR	
				GERRA
II PAL				
2				
	11C- 11C-	00	161 101 101	
Kel-		la a		
Dania		00	10	
	A REAL PROPERTY AND A REAL		ZULT	
			States and States	20

Thermoreflectance

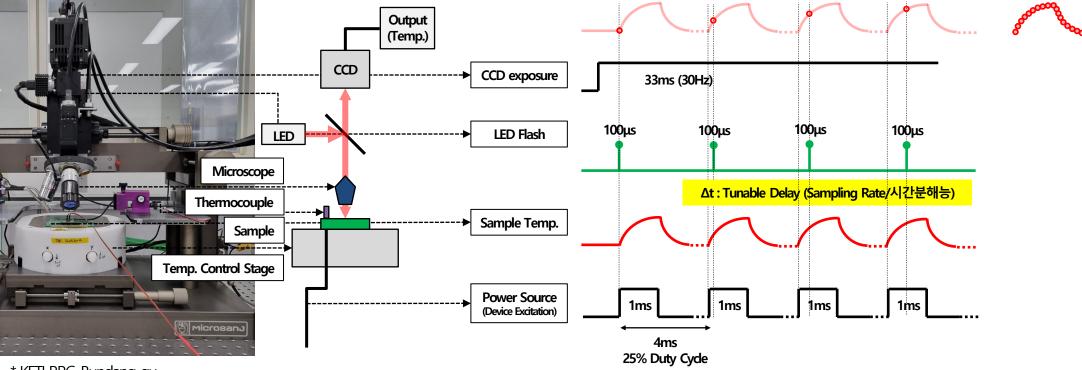

Principle	Change in reflectance by Temp.		
Coefficient	Reflectance coefficient by material		
Spatial Resolution	0.35 ~ 0.85µm		
Temp. Resolution	0.08K (Thermoreflectance Sensitivity)		
Others	AC Technique W/ Lock-in		

Infrared

Radiation Emissivity by Temp. Emissivity by material 3.0 ~ 10.0μm 0.02K (Radiative energy sensitivity)

Si transparent to IR Metals are poor emitters.

Microscope

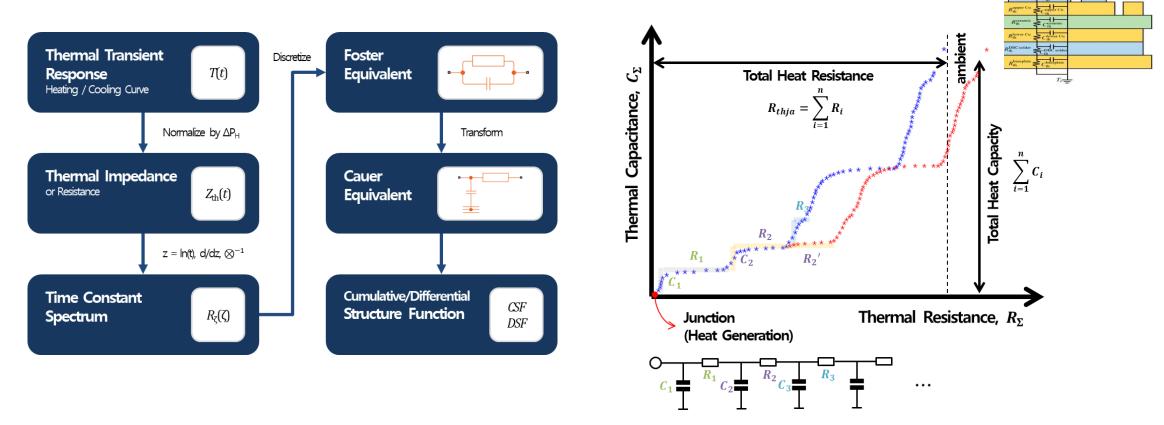

- -
 - 0.2µm

The spatial resolution of thermo-reflectance measurement using visible light is about 10 times higher than that of IR.

Transient Thermo-Reflectance Measurement Equipment - Temporal Resolution

Transient Measurement Based on Lock-in Cycle

· Lock-in : In noisy environments, extracts Amplitude and Phase signals using a Low-Pass Filter


* KETI RRC, Bundang-gu

Transient characteristics can be measured through LED Flash Delay

Analysis of Multilayer Semiconductor W/ Transient Temp.

Thermal Analysis with Structure Function

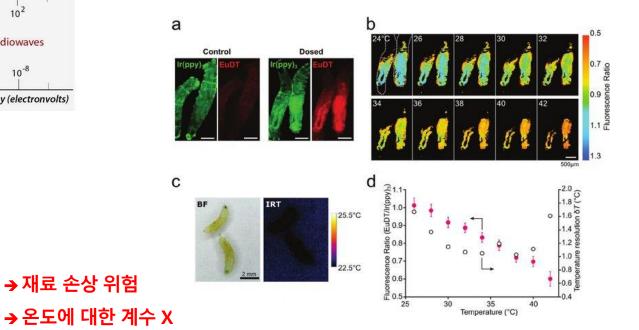
• Structure function analysis requires thermal transient response – demanding precise temperature profiling at the microscale.

Using structure function for thermal dissipation, verify package design, and identify failure-related thermal anomalies.

(참고) UV 기반 열 이미지 측정?

Electromagnetic Spectrum

- shorter					longer —	→ Wavelength (meters)
10 ⁻¹²	10 ⁻¹⁰	10 ⁻⁸	10 ⁻⁶	 10 ⁻⁴	10 ⁻²	1 10 ²
Gamma rays	X-rays	UV	Infr	ared	Microwaves	Radiowaves
10 ⁶	10 ⁴	10 ²	1	10 ⁻²	10 ⁻⁴	10 ⁻⁶ 10 ⁻⁸
- higher		Vis	ible	<u>I</u>	lower —	 Energy (electronvolts



Method	Wavelength[nm]	Application	
Infrared	700-10 ⁵	IR cam	3µm
Visible	400-700	TTR 광학	300nm 200nm
UV	1-400	EUV	13.5nm
X-rays	0.01-1	SEM(주사) TEM(투과)	5Å 1Å
Gamma Rays	<0.01	암치료	

출처: 10.5281/zenodo.3534245

■ Fluorescent(형광) Micro-thermography

· 형광체 코팅 → 자외선 조사 → 적외선 검출 온도 측정

* Si 원자 공유반경 : 1.11Å = 0.111nm